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High speed combustion

Reactive flows with velocities ~ sound speed.

- chemical reactions

- VISCOSIty

- heat conduction

- diffusion of chemical species
- fluid instabillities

- boundary layers

- turbulence

- radiation

- compressibility

- shocks

All processes are coupled.
Range of physical scales.
Flow Is rapidly evolving.



Combustion experiments in shock tubes
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Accelerating turbulent flame

K %.. ; Boundary layers

Fig. 10 Sequence of shadow photographs (0.1 ms between frames)
showing boundary layers ahead of accelerated flame. Flame propagates
from left to right; speed of lead flame edges i1s about 320 m/s. Boundary
layers are seen as dark regions on the top wall and as lighter regions
in the bottom wall of the channel. Wall roughness is 1 mm; mixture is
stoichiometric Hp—0» at initial pressure of 0.6 bar

Kyznetsov 2005



Detonation

Austin 2001




Defalgration-to-detonation transition (DDT)
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Frerre 6. Stroboscopic schlieren record of the transition to detonation with onset between

fame and shoek, 2H, + O, initially at a pressure of 554 mmHg. Pressure record shown in
insert., Vertical seale: 1 division = 200 Lk in.2. Horizontal seale; 1 division = 50 us,
Oseilloseope sweep leads the photographic record by 180 us.
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Flame

Speed ~ 10 - 300 m/s
Overpressure ~ 1 — 10 (depends)

Detonation

Speed ~ 2 - 3 km/s
Overpressure ~ 40

DDT

Overpressure ~ 100
Time scale ~ 1 micro sec.

Big safety issues.



Project's goals:
- Fundamental understanding of flame acceleration and DDT

- First principle modeling of DDT in hydrogen-oxygen mixtures

- Predicting run distance to a detonation in long pipes



Code features

3D compressible reactive flow Navier-Stokes equations.
H2+02 kinetics: 8 species, 19 reactions.

Multi-species NASA7 equation of state, temperature-
dependent viscosity, heat conduction, mass diffusion, and
radiation cooling.

Regular Cartesian mesh with cell-based AMR.

Dynamic mesh refinement and mesh re-balance every
fourth time step.
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Strong scaling on Mira, c8

black — 4.3x10° cells, full physics
open — 1.0x10' cells, full physics
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Kinetics

Reaction A s n E,. kcal
1 H+ 0, =0 + OH 1.91x 10" | 0.00 | 16.44
2 O + H, sH + OH 5.08x 10* | 2.67 | 6.292
3 OH + H;, =H + H,0 2.16x 108 | 1.51 3.43
4 O + H,0 =0H + OH 2.97x 105 | 2.02 13.4
5 H, +MsSH+H+M 457x 109 | -1.40 | 105.1
6 O+0+Ms0, + M 6.17 x 10 | -0.50 0.00
7 O+H+MsSOH+M 4.72x 10 | -1.00 | 0.00
8 H+OH+M=H,0+M | 4.50x% 10%2 | -2.00 | 0.00
9 H+0, +MSHO, +M | 348x 107 | -041 | -1.12
9a H + 0, =SHO, 1.48 x 102 | 0.60 0.00
10 HO, + H <H, + 0, 1.66 x 103 | 0.00 0.82
11 HO, + H =0OH + OH 7.08 x 103 | 0.00 0.30
12 HO; + O SOH + O, 3.25x 10 | 0.00 0.00
13 HO; + OH sSH,0 + 0, | 2.89x 103 | 0.00 | -0.497
14 | HO, + HO, =H,0, + O, | 42x10™ | 0.00 | 11.98
14a | HO, + HO, SH,0, + 0, | 1.3x 10" | 0.00 | -1.629
15 | H;O, +M SOH + OH +M | 1.27x 107 | 0.00 45.5
15a H,0, SOH + OH 2.95% 10" | 0.00 48.4
16 H,0, + HSH,O0+OH | 2.41x 103 | 0.00 3.97
17 H,0, + H SH, + HO, 6.03x 103 | 0.00 7.95
18 H,0; + O =OH + HO, | 9.55x 10% | 2.00 3.97
19 | H,0, + OH =H,0 + HO, | 1.0x 10'% | 0.00 0.00
19a | H,0, + OH =SH,0 + HO, | 5.8x 10" | 0.00 9.56




Table B.5: Lennard-Jones parameters, first 2 columns - [10], last two
columns - [? ]

Reactant [ ¢, °K o A [ e°K o A
H 370 35 145.0 2.05
H, 59.7 2.827 | 380 292
(8] 106.7 3.05 | 80.0 275
s 106.7 3.467 | 107.4 3.458
OH 798  3.147 | B0.0 275
H,0 260.0 2.8 572.0 2.605
H 106.7 3.467 | 1074 3.485
HyOs 289.0 4.196 | 1074 3.4558

where T7 = T/¢ are the reduced temperatures, o, and ¢
are the Lennard-Jones cross-sections and potential pa-
rameters, respectively, and Q%% is the dimensionless
Lennard-Jones collisional integral given as a function
of reduced temperature T* in Appendix M-I of [9]. First
two columns of Table B.5 give o, and &; adopted from
Table 7-1 of [10]. Third and fourth columns give o and
& taken from the GRI-Mech database [? ].

Appendix B.3. Thermal conductivity

The coefficient of thermal conductivity of a mixture
is [9-11]

N
A= Z i ‘, (B.1)
=
where
e 1.065 '
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and
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are the thermal conductivities of individual species cor-
rected for the transfer of energy between translational
and internal degrees of freedom. The uncorrected coef-
ficients are
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e =3.12 103’ B.10
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and the correction (Eucken) factors are
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Appendix B.4. Mass diffusion

Diffusion velocities u®' are determined by a system
of Stefan-Maxwell ditfusion equations combined with
the condition on the zero total mass diffusion flux [9],

i mm Y Y (u™ - u*) =G,

(B.12)
=1 D
N N
P Z mYu = Z mg® = (B.13)
=1 =1
In Eq. (B.12)
= V(MY - K?'v—; (B.14)

are the combined gradients driving the diffusion of reac-
tants where we take into account an ordinary mass dif-
fusion and a seconday effect of thermal diffusion (Soret
eftect) which may be important for light species such as
Hand Hs,

Dy = A—A di. (B.15)
P
are binary diffusion coefficients, where
2.265% 10°® V2T
dy = . (m;+ m.t] -~ . (B.16)
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are thermal dittfusion ratios. Other variahles are
_ ooy _ 4
U'J.E—T al_c_f-s -
o DAY o ‘
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where U and Q% and dimensionless collisional in-
tegrals provided as a function of reduced temperature
I™ in Appendix I-M of [9].

Following Giovangigli [12] we change variables in
(B.12) from u?* to q** and obtain a system of equations
for ditfusion fluxes

N
Z req™ =g (B.19)
=1

where

._I;f; = .yk
Fp=(01-65=L-5 L3
= ) dy ik A, s (B.20)

z=M1G,



Reflected shock tube experiments: shock bifurcation

/ Shock tube

End wall

Brossard etal 1985



Reflected shock tube in CO2 validation
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Comparison:

Angle Experiment Simulation
1 36 deg 37 deg
2 -128 deg  -124 deg




Reflected shock tube experiments
Simulation of strong ignition in 2H2+02
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End wall




Reflected shock tube experiments
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Reflected shock tube experiments
Simulation of weak ignition in 2H2+02

Weak ignition in 2H2+02, incident Mach number = 1.47

2.5cm

2.5cm

Boundary layer




DDT in a hydrogen-oxygen mixture, BG/Q

DDT in 2H2+02 at 1 atm. Initial pressure (schlieren)




Next step: high resolution simulations
of DDT in a long pipe.

Tube length 172 cm
Cross-section 2.7 cm X 2.7 cm

N cells ~ 10,000,000,000

N time steps ~ 50,000

Numerical resolution ~ 6 microns



Scaling plots, BG/P
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